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ABSTRACT 

It is proved tha t  every normalized weakly null sequence has a subse- 

quence which is convexly unconditional. Further, a hierarchy of summa- 

bility methods is introduced and with this we give a complete classifica- 

tion of the complexity of weakly null sequences. 

I n t r o d u c t i o n  

In the present paper we investigate the behavior of the subsequences of a weakly 

null sequence (Xn)neN of a Banach space X with respect to two fundamental 

properties. The first is convex unconditionality which is investigated in the first 

section of the paper. This is defined as: 

Detinition: A normalized sequence (Xn)neN in a Banach space X is said to be 

c o n v e x l y  u n c o n d i t i o n a l  if for every 5 > 0 there exists C(5) > 0 such that  

if an absolutely convex combination x = ~n~176 a,~xn satisfies {ix{{ > 5 then 

{{ ~n~__l ena,~xn{I > C(5) for every choice of signs (en)neN. 

The result we prove here is the following theorem. 

THEOREM A: [f (Xn)ne N is a normalized weakly null sequence in a Banach space 

X then it has a convexly unconditional subsequence. 

A fundamental example due to B. Maurey and H. Rosenthal [M-R] showed 

that  we could not expect that  every normalized weakly null sequence has an 
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unconditional subsequence. The recent examples [G-M], [A-D] show that  there 

are spaces without any unconditional basic sequence. On the other hand there 

are results where some weaker forms of unconditionality appear. One of them is 

due to J. Elton [El, [O1] which is related to the unconditional behavior of linear 

combinations with coefficients bounded away from zero, and the other is due to 

E. Odell [02] and it is related to the unconditionality of Schreier admissible linear 

combinations. Our theorem is in the same direction as Elton's Theorem; more 

precisely it is the dual result, and the proof is based, as is his proof, on infinite 

Ramsey Theory. The result follows from a combinatorial principle (Lemma 1.2) 

which seems to be of independent interest and which is also used in the second 

part  of the paper. 

The existence of a convexly unconditional sequence is strong evidence that  the 

convex bounded sets behave much better  to unconditionality than the subspaces 

of a Banach space. 

In the second part we deal with summability methods. The starting point for 

our investigation is the following question. 

It follows from Mazur's theorem that every weakly null sequence has con- 

vex combinations norm converging to zero. The general question is to describe 

"regular" convex combinations with this property. This problem dates to the 

early days of the development of Banach space theory. Banach and Saks proved 

that  every bounded sequence in LP(#), 1 < p < oe has a norm Cesaro summable 

subsequence. This result was extended by W. Szlenk for weakly convergent se- 

quences in L 1 (#). Shortly after the Banach-Saks Theorem, an example was given 

by J. Schreier [Sch] of a weakly null sequence with no norm Cesaro summable 

subsequence. Schreier's example is defined as follows: First we define the following 

family, 

~" = {E C N: # F  < minE} U {9}. 

Then on the vector space Coo(N) of eventually zero sequences of reals we define 

the norm 

"(an)n~N" = sup t E 'an': F C "~} " k n e E  

It is easy to see that  jc  is compact in the topology of pointwise convergence. 

Hence the unit vector basis (en),~eN is weakly null. Further, from the definition 

of ~" we get that  for every k and integers nl < n2 < .-. < nk we have 

enl + en2 + " " + e,~k > 1 

k - 2 "  
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So no subsequence of (e,~)neN is norm Cesaro summable. Later it was proved by 

H. Rosenthal that if (xn)neN is weakly null and no subsequence is norm Cesaro 

summable then there exists (ni)iEN and e > 0 such that 

i 6F  iEF 

for all F E ~ .  Whenever this property appears, we say that the sequence (x,~)ieN 

is an ~1 spreading model. This result, in connection with a theorem proved by P. 

ErdSs and M. Magidor [E-M], gives the following dichotomy. 

THEOREM: For every weakly null sequence (Xn)ne N exactly one of the following 
holds: 

(a) For every M E [N] there exists L E [M] such that for all P E[L], P = 

(ni)icN, the subsequence (X,~,)ieN is norm Cesaro summable. 
(b) There exists M E [N], M -- (mi)ieN such that the subsequence (x,~,)ieN 

is an s spreading model. 

A proof of this theorem is also given in [M]. 

This theorem is complete when condition (a) holds. If (b) holds then there is 

no information on the structure of convex combinations that converge in norm to 

zero. Our aim is to give a full extension of the above theorem and through this to 

describe the complexity of weakly null sequences. For this we use two hierarchies, 

the Schreier Hierarchy and the Repea ted  Averages Hierarchy. 

THE SCHREIER HIERARCHY. The Schreier family ~" is quite important in the 

theory of Banach spaces. Recall that it is one of the main ingredients in the 

definition of Tsirelson's space IT]. D. Alspach and S. Argyros [A1-Ar] defined 

a family {-~}~<~1 called generalized Schreier families. The definition of ~'~ is 

given in the following way: 

Set ~'0 = {{n}: n E N} tJ {0} and .~1 ~--- . ~ -  

If ~'~ has been defined then we set 

9 : r  U { O } ' i = l  

If ~ is a limit ordinal choose (~n),~eN strictly increasing to ~ and set 

~:e = {F: F e ~'e. ,n _< min F }  U {0}. 

We call this family the Schreier Hierarchy since it carries certain strong uni- 

versal properties some of which are described in the present paper. Roughly 
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speaking, the complexity of every compact countable metric space is dominated 

by some member of {-~'~}~<~1. Further members of {~'~}~<~1 appear naturally in 

several cases. For example, the n th n o r m  in the inductive definition of Tsirelson's 

space is implicitly connected to the family .Tn. Explicitly the family (~'n),~eN ap- 

peared for the first time in an example constructed by E. Odell [A-O]. Recently 

{Jc~}~<~ 1 have been used in the investigation of asymptotic gP spaces. Connected 

to the family {.T~}~<~ 1 is the following definition. 

Det~nition: Let (Xn)neN be a bounded sequence in a Banach space X. For M E 

[N], M = (mi)iEN we say that (Xrni)iEN is an g} spreading model if there exists 

e > 0 such that for all choices, (ai)ief, for F E ~'~ we have that: 

Ela r 
iEF iEF 

It is clear that an g~ spreading model is the usual g I spreading model. Since 

the families (.T~)~<~ 1 are of increasing complexity, the existence of a subsequence 

which is an l~ model, for large ~, describes strong gl behavior of the given se- 

quences. As proved in [A1-Ar], if a sequence contains e~ spreading models for all 

< Wl then actually it contains a subsequence equivalent to the unit vector basis 
of gl. 

The second hierarchy introduced here is that of Repeated Averages. 

THE REPEATED AVERAGES HIERARCHY. To introduce this we give some 

notations and definitions. 

We denote by S + the positive part of the unit sphere of gl (N). If H = (Xn)neS 
is a bounded sequence in a Banach space and A = (an)heN E S + we set 

A . H  = ~ a , x ,  E X. 
n = l  

For M E [N] a sequence (A,) ,~N of successive blocks in S + defines an M- 

summability method, denoted by M-(An)neN if M = U,~~176 1 suppAn. It is clear 

that  M - (A,)neN is a regular summability method in the classical sense (cf. [K] 

pp. 480-481). 

Det~nition: A sequence H = (xn)neN in a Banach space is M-(An),~eN 
summable if the sequence (An " H)neN is Cesaro summable. 

The RA Hierarchy is defined, inductively, for every M E IN] and ~ < wl and 

it is an M-summability method denoted by (t~M),eN. We also use the notation 

(M, ~) for the same method. Thus the RA Hierarchy is the family 

{(M,~): M E [N],~ < wl}. 
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The precise definition is given at the beginning of the second section of the 

paper. A brief desciption of it goes as follows: For ~ = 0 and M = (mn),~eN we 

set ~M = em~. Thus the (M, ~)-summability, for ~ = 0, of a weakly null sequence 

(x,z)neN is exactly the norm Cesaro summability of the subsequence (Xm~)neN 

where M = (mn)nEN. 

If (~M)neN has been defined then for ~ = ~ + 1 we set ~M to be the average of 
M an appropriate number of successive elements of ( ~ ) ~ e N .  This justifies the term 

M Repeated Averages. For ~ a limit ordinal (~,~)~eN is constructed by a careful 

choice of terms of {(~M): ~ <: ~,n E N}.  

One property we would like to mention here is that supp ~M E .T'~ and moreover 
M it is, in a sense, a maximal element of ~'~. Thus (~n)~eN exhausts the complexity 

M of the family ~'~. More important is that (~,~)heN carries some nice stability 

properties (see P.3 - P.4 after the precise Definition in Section 2) which allows 

us to handle them in the proofs of the theorems. 

The difference between the RA Hierarchy and the summability methods 

described as an infinite matrix is that in the RA Hierarchy the summability 

of a subsequence (xn),~eM depends on the subset M while in the usual case, after 

reordering (Xn)nEM as (Xnk)kEN, we ignore the set M and apply the summabil- 

ity method with respect to the index k. Thus in our case for a fixed countable 

ordinal ~ we have 2 ~ methods {(M, ~): M E [N]} which have uniformly bounded 

complexity. This is so, since for every M E [N], n E N, the set supp~ u belongs 

to the compact family ~'~. 

For a given M E [N] the methods {(M,~): ~ < Wl} are increasing very fast. It 

is worthwhile to remark that if for ~ < Wl and n E N we set k~ = rain supp ~N 

then the family {(k~n): n E N, ~ < wl} is the Ackermann Hierarchy, a well known 

hierarchy of Mathematical Logic. 

THEOREM B: For a weakly null sequence (x,~),~eN in a Banach space X and 

< wl exactly one of the following holds. 

(a) For every M E [N] there exists L E [M] such that for every P E [L] the 

sequence (X,~)neN is (P, ~) summable. 

(b) There exists M E [N] M = (mi)ieN such that (Xm~)ieN is an g~+l spreading 

model. 

It is proved in [A1-Ar] that  for every weakly null sequence (xn)neN there 

exists ~ < Wl such that  for every r >_ ~ no subsequence of (Xn)neN is an g~ 

spreading model. So we introduce the B a n a c h - S a k s  index of a weakly null 
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sequence defined as 

BS[(x,~)neN] = min{~: no subsequence of (Xn)nCN is an ~} spreading model} 

and from Theorem B we get the following 

THEOREM C: Let H = (Xn)neN be a weakly null sequence with BS[(xn)nEN] --- 

~. Then ~ is the unique ordinal satisfying the following: 

(a) For every M C [N] there exists L E [M] such that for every P C [L], 
lim,~N !1~ P" HII = 0. 

(b) For every ( < ~ there exists Lr E [N] such that Lr = (ni)ieN and (Xn,)iEN 

is an g~ spreading model. 

(c) If  ~ = ~ + 1 there exists e > 0 and L C [N] such that for all P E [L], 

I~P . H [ > e  and (~P. H)n~N is Cesaro summable. 

For ~ = 0 Theorem B implies exactly the dichotomy mentioned at the 

beginning of the introduction (Theorem). Theorem C gives the full description 

of the norm summability for a weakly null sequence in terms of the methods 

{ (M, ~): M E [N], ~ < W 1 }. This justifies the universal character of these summa- 
bility methods as well as the universal character of the Schreier Hierarchy since, 
as we mentioned above, the supp ~M belongs to ~'e. 

Definition: (a) A Banach space X has the ~-Banach-Saks p rope r ty  (~-BS) if 

for every bounded sequence (Xn)neN in X there exists L E [N] such that (xr~)neN 
is (L, ~) summable. 

(b) The space X has the weak ~-Banach-Saks p rope r ty  (w ~-BS) if the 
above property holds for weakly convergent sequences. 

The next corollaries follow from Theorems B and C. 

COROLLARY: For every separable reflexive Banach space X there exists a unique 

ordinal ~ < a;1 such that: 

(i) For all ordinals ~ > ~ the space X has ~-BS. 

(ii) For every ~ < ~ the space X fails ~-BS. 

COROLLARY: If  X is a separable Banach space not containing e 1 isomorphically 

then there exists a unique ordinal ~ < ~dl such that: 

(i) For all ordinals ~ >_ ~ the space X has w (-BS. 

(ii) For every ~ < ~ the space X fails w (-BS. 

In the final part we introduce an ordinal index, the anti-uniform convergence 
index (auc-index) which is connected to the existence of s models. We 
prove the following. 
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THEOREM D: If (Xn)nEN is a weakly null sequence and its auc index is greater 

than w ~ then there exists M E IN] such that (Xn)neM is an ~ spreading model. 

The proofs of the above theorems use infinite Ramsey theory and an index 

introduced here for compact families of infinite subsets of N that  is called the 

strong Cantor Bendixson index. This index helps us to develop a criterion for 

embedding the family .T~ into a family ~" provided the index of ~" is greater than 

w~. Also, the proofs of these theorems make use of Lemma 1.2 and a variation of 

it. 

ACKNOWLEDGEMENT: The authors express their thanks to G. Androulakis and 

E. Odell for their useful suggestions. 

NOTATION. For an infinite subset N of N we denote by IN] the set of all infinite 

subsets of N. Y~rther, we denote by IN] <~ the set of all finite subsets of the set 

N. In the sequel for F E [N]<~ we will identify the set F with its characteristic 

function. Thus for A = (an)ne N in ~I(N) we will denote by (A, F) the quantity 

~neF  an. For M E [N] we will denote by M = (mi)ie N the natural order of 

the set M. We topologize IN] by the topology of the pointwise convergence, by 

considering IN] as a subset of the space N N of irrationals. 

As we mentioned above, our proofs use in an essential way an infinite Ramsey 

Theorem. This theorem, one of the most important principles in infinite combi- 

natorics was proved in several steps by Nash-Williams IN-W], Galvin and Prikry 

[G-P] and in the final form by Silver [Si]. Silver's proof was model-theoretic. 

Later Ellentuck JEll] gave a proof of Silver's result using classical methods. We 
recall the statement of the theorem. 

0.1. THEOREM: Let A be an analytic subset of [N]. Then for every M E [N] 

there exists L E[M] such that either [L] C A or else ILl C [M] \ A. 

In the sequel any set A satisfying the above property will be called completely 
Ramsey. 

1. Convex unconditionality 

The first section is devoted to the proof of Theorem 1.3 and some consequences 

of it. Our approach is similar to Elton's proof of the result that  we mentioned 

in the introduction, in particular, Lemmas 1.1, 1.2 and the dual statements of 

the corresponding results in his proof. As a consequence of Lemma 1.2 we get 

Corollary 1.6 about adequate subfamilies of campact families of finite sets. 
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1.1. LEMMA: Let F be a relatively weakly compact subset ofc0(N).  Then for 

every N'  E [N] there exists M E [N'] such that: Ill1 < 12 < . . .  < In are elements 

of M and there exists f E F such that for every i = 2 , . . . ,  n, f(li)  > 5, then 

there exists g E F such that for every i = 2, . . .  ,n, g(li) > 5 and ]g(/1)l < c. 

Proof: For n E N we set 

Sn = { M  E IN']: M = (mi) and if there exists f E F such that 

Vi = 2 , . . . ,  n, f (mi )  > 5 then there exists g E F such that 

Vi = 2 , . . .  ,n ,g(mi)  > 5 and ag(ml)l < c}. 

It is clear that  each Sn is closed in the topology of pointwise convergence. Hence 

S = ~n~__l Sn is closed and therefore completely Ramsey. Choose M E [N'] such 

that  either [M] C S or [M] C [g']  \ S. 

Suppose that  [M] C [N'] \ S. Let M = (mi) and consider any n E N. For 

1 < j < n set 

Lj : {mj,  ran+l, ran+2,. . .},  

which does not belong to S. Therefore, for any such j there are f j  E F and lj E N 

such that  for all i = 1 , . . . ,  li, fj(mn+i) > 5 and every g E F with g(mn+i) > 5 for 

i <__ lj satisfies tg(mj)t >_ e. Set ljo = max{/j: 1 < j < n} and fn  = fjo. Observe 

that  for 1 <_ j <_ n, f'~(m,~+i) > 5 for all i = 1 , . . .  ,lj and hence f n (mj )  >_ e for 

all j = 1 , . . . ,  n. It is clear now that the sequence {fn} does not have a weakly 

convergent subsequence. Therefore the case [M] C [N'] \ S is impossible and it 

is easy to check that  if [M] C S then M satisfies the conclusion of the lemma. 

1.2. LEMMA: Consider a relatively weakly compact subset F ofc0[N], 5 > 0 and 

0 < e < 1. Then for every N '  E [N] there exists M = (mi) E [N'] such that: 

For every f E F,  n E N and I C {1, . . .  ,n} with miniei f (mi )  >_ 5 there exists 

g E F satisfying the following two conditions: 

(i) mince1 g(m~) > ( 1 -  e)5, 

(ii) ~{i_g,~: iCx} Ig(m~)l < e-~. 

Proof: C hoosea  > 0 with If(m)I < a for m E N, f E F.  Next we choosea  

strictly increasing sequence (kn) of natural numbers such that  2 k~ > a and if 

en 1/2 k" t h e n  En~__l c~ < 5. E k = n  Ek E �9 

We divide the proof into two stages. In the first we will construct the set M 

and in the second we will show that it satisfies the conclusion of the lemma. 

The set M = (mi) is defined inductively so that the following conditions are 

fulfilled. 
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If I is a finite subset of N,  and j < min I ,  then for every f E F such that  

mini f ( m i )  > 5 there exists g E F with: 

(a) mini  g(mi) > 5, 

(b) Ig(mj)l < ej, 

(c) [g(mi) - f (mi ) l  <_ ej for i = 1 , 2 , . . . , j -  1. 

To find such an M we choose inductively a decreasing sequence of infinite sets 

N' D N1 D -.- D Ni D . . .  and we set mi = min Ni. 

To choose N1 we apply Lemma 1.1 to find a subset N1 of N '  such that  the 

conclusion of Lemma 1 holds for the given 8 and e = el. This finishes the choice 

of N1. 

Suppose that  N '  D N1 D ..- D Nj have been chosen such that  if mi = min Ni 

then ml  < m2 < .-" < mj and, if 1 < i <__ j ,  I is a finite subset of Ni with 

m~ < m i n i ,  f E F with minkei f ( k )  > ~ then there exists g E F satisfying (a), 

(b), (c). To choose Nj+I we consider the set W of all closed dyadic intervals of 

length ej+l = 1/2 k~+l which are contained in the interval [ -2  kl , 2k@ We denote 

by W j the j - t imes product  of W and for every B e W j, B = (B1, . . .  ,Bj ) ,  we 

set 

FB = { f  �9 F: I(mi) �9 Bi, i  <_ j }  

which clearly is relatively weakly compact. 

Applying repeatedly Lemma 1.1, we find an infinite subset Nj+I  of Nj such 

that  mj < m i n N j + l  and the conclusion Of Lemma 1.1 holds for the set Nj+I and 

for every Fs ,  B �9 W j, the given (f and e = ej+l. This completes the inductive 

construction of the sets (Ni) and hence the set M is defined. 

I t  remains to show that  M satisfies the desired properties. 

THE SET M SATISFIES (i) AND (ii). Given n �9 N, a subset I of {1 ,2 , . . .  ,n} 

and f �9 F such that  miniei  f ( m i )  > ~t, we shall define the desired function g. 

For this, we inductively choose go, g l , . . . ,  g~ elements of F such that:  

f = g0, 
i lk  �9 N,  1 < k < n and go,g1,. . .  ,gk have been chosen satisfying the property: 

for every 1 < 1 < k and i = 1 , 2 , . . . , 1 -  1, 

Igt(mi) - gl-l(?ni)l ~ el a n d  

for i �9 {l + 1 , . . .  ,n} fq I ,  we have that  gz(mi) > 6 

and gt(mt) > 8 if I �9 I or Igdml)l < el otherwise. 

To choose gk+l we distinguish two cases. 

CASE 1: k + l � 9  Then we s e t g k + x = g k .  
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CASE 2: k-~- 1 ~ I.  Then we choose gk+l such that Igk+l(mi) -gk(mi) [  _< ek+l 

for i <_ k, gk+i(mi) > 5 for every i E { k + 2 , . . .  , n } n I  and ]gk+l(mk+l)] < ek+l. 

The existence of such a gk+l follows from the properties of the set M. 

This completes the inductive definition of go , . . . ,  gn. It is easy to see that the 

final function gn is the desired g. The proof of the lemma is complete. 

1.3. THEOREM: Every normalized weakly null sequence (Xn)ne N in a Banach 

space X has a convexly unconditional subsequence. 

Proo[: Assume, by passing to a subsequence if it is needed, that  (x,~),,eN is 

Schauder basic with basis constant D _> 1. We inductively apply Lemma 1.2 to 

choose a decreasing sequence (ME)heN such that Mn satisfies the conclusion of 

the Lemma for f = {(X*(Xn))neN , Iix*II __~ 1}, 5 = 1/n, e = 1/n 3. 

We select a strictly increasing sequence M = (mE)heN such that  m,, ~ M,~. 

CLAIM: The sequence (Xn),~eM is convexly unconditional. 

Indeed, given an absolutely convex combination x = ~ n e M  anxn with IixiI > 

1/k  and (r a sequence of signs we choose x* E B x .  with x*(x) > 1/k. 

There exists a finite J C M such that x*(~,~eg anx,~) > 1/k. We set 

J1 = {n E J: Ix*(xn)] > 1/2k}. 

Then we have x* (~ ,~e j , . g  ' anxn) <_ 1/2k and hence x*(~ , , eg  1 anx,,) > 1/2k. 

By splitting the set J1 into four sets, in the obvious way, we find a subset I C J1 

such that: 

] ~ ,~eI  e~a,~] > 1/8k, 
(enan: n E I} are either all non-negative or all negative and 

{x*(x~): n E I} are of the same sign. 

We consider x* if the sign of x*(xn) is positive and - x *  if the sign is negative 

and this we again denote by x*. Thus we also have x*(xn) > 1/2k for n E I. For 

every r E N we denote by B(r)  the unconditional constant of (Xml , . . . , xm~} .  

This means that  for G C {1 , . . . ,  r}, 

< B ( r ) .  
iEG i=1 

(This happens because the norm II" II in the space of dimension r that  is generated 

by X m l , . . . ,  X'm~ is equivalent to the maximum norm with respect to this basis.) 

We spli t / ,  into two sets I1 = I n  {ml ,  . . . , m2k-1} and I2 = I \ I 1 .  We have 

nEI1 nEI2 
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If the first condition holds, then 

(a) 
i ] 1 

1 neI~ t 1 1 1 > D . B ( e k - 1 )  y ~ e n a "  . ~ >  D . B ( e k - 1 ) ' 3 2 k "  

In the second case, there exists y* E Bx* such that 

and 

(ii) max {ly*(z,~)]: n ff {m2a,. . .  ,ml} \ I2} < 1/2k(4k) a, where ml = maxI .  

Therefore 

l 

i = 2 k  nEI2  

1( 
- 32k2 1 

n C { m 2 k , . . . , m l }  \ I~ 

1 ~ 1 1 1 
(4 )3 ) 2k 2k (4k)  

1 1 ~ 1 
(4k) 3 (2~) 2 )  > 64k'----- ~ 

Finally 

(2) n~M ~ n an xn > ~ gmiam~Xm~ 
i:2k 

D.128k  2" 

From (1) and (2) we get that  

C > m i n  D . B ( 2 k - 1 )  32k 'D-128k  2 " 

(C(.) is defined in the definition of convexly unconditional.) 

1.4. COROLLARY: Let (Xn)neN be a normalized weakly null sequence. Then/ 'or 

every M e [N] there exists L E [M], L = (/j)jeN such that the following property 
is satisfied: 

oo For every k > 0 there ex/sts C(k) > 0 such that for every x = ~ j=l  ajxl~ with 
o o  I[xl[ = 1 and ~ j=l  laJl < k, then for every sequence (ej)jeN of signs we have 

o o  o o  Proo~ Set d : E j=I  laJl and bj --- aj/d. Then ~j=lbjxlj  is an absolutely 

convex combination and II ~ bjxl~ II > 1/d > 1/k. Hence by Theorem 1.3 we get 
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the left inequality with C(k) = C ( l /k) .  The right is immediate from the triangle 

inequality. 

The following consequence of Lemma 1.2 has been proved by H. Rosenthal 

with the use of transfinite induction. 

1.5. THEOREM: Let K be a compact space and (fn)nEN a sequence of continuous 

characteristic functions converging pointwise to zero. Then there exists L 6 [N], 

L = (/j)jeN such that (/l~)yeN is an unconditional basic sequence. 

Proof." Define F: K ~ cO(N) by the rule F(x)  = (fn(x))neN. Then for each 

x 6 K,  F(x)  is a finite subset of N and F[K] is weakly compact. By Lemma 

1.2, there exists L 6 [N] such that for every x 6 K,  G C F(x)  M L there exists 

y 6 K such that  F(y)  n L -- G. It is easy to check that the sequence (f,~),~eL is 

an unconditional sequence. 

1.6.  COROLLARY: Let A4 be a compact family, in the pointwise convergence 

topology, of finite subsets of N. Then for every infinite subset N of N there 

exists an infinite subset M of N such that the compact family 

,~I[M] = { a  M M: G e M }  

is adequate (i.e. for every G E J~4 and F C G M M there exists G t E A4 such that 

F = G' A M).  

Proof." Consider the set K = {XG: G C A4}. Then K is a weakly compact 

subset of c0(N). Applying Lemma 1.2 for the sets K, N and the numbers 5 = 1/2, 

c = 1/2 we get an infinite set M = (mi)iEN satisfying the conclusion of it. We 

claim that  M is the desired set. Indeed, for a nonempty subset F = (mi)iel  of 

G N M and for every n E N such that I C {1, 2 , . . . ,  n} we set G,~ the elements 

of A/[ such that  
n G~n{ ~}i=l = F.  

This follows from the properties of the set M. 

Set G' any cluster point of the sequence {Gn }. Then, clearly, G'M {mi}iEN = F 

and the proof is complete. 

2. Summabil i ty  methods 

The second section is divided into five subsections. In the first of them we study 
the initial properties of the two hierarchies (the Schreier and the RA). In the 
second we introduce the strong Cantor-Bendixson' index. This is a variation of 
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the classical C-B index and we use it in order to develop a criterion for the 

embedding of the ~ into an adequate family ~'. In the third subsection we 

prove the basic ingredient for our main result. This is Proposition 2.3.2 on the 

structure of large families. Its proof is a combination of transinfinite induction 

with repeated use of infinite Ramsey Theory. In the fourth subsection we present 

the main results of the second section as mentioned in the introduction. Finally 

in the fifth subsection we study the anti-uniform convergence index, introduced 

here, which is a criterion for the existence of ~ spreading models for weakly null 
sequences. 

THE SCHI~EIER HIERARCHY, THE RA HIERARCHY. Notation: We denote by 

S~ the positive part of the unit sphere of ~I(N). For A = (an)~eN in S + and 

F = (in)heN a bounded sequence in a Banach space X, we denote by A.  F the 
usual matrix product, that  is: 

o o  

A. F --- ~ anx n. 
n = l  

2.1.1. Definition: For an infinite subset M of N an M s u m m a b i l l t y  m e t h o d  

is a block sequence (An)heN with AN E S + and M = Un~176 suppA~ where 

supp An = {n E N: an ~ 0}. 

2.1.2. Definition: Suppose that  (A,~)~eN is an M summability method. A 

bounded sequence F = (x.),~eN is said to be M - (An)heN s u m m a b l e  if 

the sequence (A~ �9 F)neN is Cesaro summable. This means that  the sequence 
n zn = ( ~ k = :  Ak" F)/n is norm convergent. 

2.1.3. Remark: To each M �9 iN], M = (mn),~eN, we assign the M-summability 

method A,~ = {e,~ }. Then the M - (A,~)~eN summability of (X~),~eN is exactly 
the usual Cesaro summability of the subsequence (xn),~eM. 

DEFINITION OF THE SCHREIER HIERARCHY. Next we recall the definition of 

the generalized Schreier families (~'~)~<~1. These are defined inductively in the 
following manner. 

Notation: For F:,  F2 in iN] <~ with F: ~ O, F2 ~ 0 we denote by F: < F2 the 
relation max F: < rain F2. 

We set ~'0 = {{n}: n e N} LJ {0}. 

Suppose that  ~ = r + 1 and ~'r has been defined. We set 

,T~= F e [ N I < ~ : F = U F ~ , F i e . ~ ( , n < _ F :  <. . .<F,~  U{0}. 
i----1 
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If ( is a limit ordinal and ~'r has been defined for all ~ < ~ then we fix a strictly 

increasing family of non-limit ordinals (~n),~EN with supra = ~ and we define 

~'~ = {F e [N]<~~ n _< m i n F  and F C .T~ for some n e N} U {0}. 

Remark: The use of a sequence of non-limit ordinals (~,~),~eN in the definition 

of .f~, ~ limit, is necessary. We make this assumption in order to prove the 

Approximation Lemma given below. 

DEFINITION OF THE RA HIERARCHY. To each M E [NJ and ( < wl we will 
M assign inductively an M summability method ( ( ~ ) h e n  in the following manner: 

(i) For ~ = 0, M = (mn)neN we set ~ = {em. }. 
(ii) I f~  ~ + l ,  M e [ N ] a n d  M = ( ~ n ) h e N  has been defined then we inductively 

M �9 M define ( (n)heN as follows. We set kl 0, Sl = = mm supp r , and 

: r + + C 
81 

Suppose that  for j = 1, 2 , . . . ,  n - 1, kj and sj have been defined and 

_~_ M 

sj 

Then we set 

M kn = kn-1 q- sn-1, sn = minsupp~k,+l  and 
M M 

8n 

This completes the definition for successor ordinals. 

(iii) If ~ is a limit ordinal and if we suppose that for every ~ < ~ and M E [N] 
M M the sequence ( t : . ) h e n  has been defined, then we define (~,~),~N as follows: 

We denote by (~)neN the strictly increasing sequence of ordinals with sup ~,~ = 

that defines the family ~ .  

For M = (mk)k~N we inductively define M1 = M, nl = rnl, 

{ M1} minM2, M 2 =  m k : m k f [ s u p p [ ~ n l ] l  , n2 = 

{ ]1M~ } n3 = minM3, and soon.  M3 = ink: mk ~- supp[~n2 , 

We set 

M Hence ( ~ ) ~ e N  has been defined. This completes the definition of RA Hierarchy. 
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PROPERTIES OF THE TWO HIERARCHIES. The following properties c a n  b e  

established inductively. 

P.I: For ~ < 091 and M �9 IN] M (~n)sen  is an M-summability method, i.e., 
M i ,oo ~-M (~n)heN is a block sequence of elements of S + and M = tJn=l supp~n �9 

P.2: For every ~ < Wl, M �9 IN] and n �9 N supp~ M �9 jL'~. 

P.3: For every ~ < Wl and every N, M �9 IN] such that supp~ M = supp~ N for 

i = 1 , 2 , . . . , k  we have ~M = ~N for i = 1 ,2 , . . . , k .  

P.4: For every M �9 IN] and ( n k ) k e  N �9 [N] if M'  = Uk=lsupp~,~k''~ ~-M then 
M' 

= 

Remark: Properties P.3 and P.4 are important for our proofs and they indicate 
M 

a strong stability of the methods (~n)heN. 

2.1.4. Definition: A family jc of finite subsets of N is said to be a d e q u a t e  if ~" 

is compact and for every F �9 .T, if G C F then G �9 ~'. 

2.1.5. Notation: If .T is an adequate family and L �9 [N] we denote by ~'[L] the 

restriction o f J  c on L, that is ~'[L] = ~ 'A [L] <~ (= {g �9 .T: F C L}). 

Clearly ~'[L] is an adequate subfamily of ~'. 

2.1.6. Notation: For an ordinal ~ < ~l and M �9 [N], M = (mi)~eN we define 

= { c :  c = F �9 

It is easy to see that  ~ ' ~  is an adequate family. 

2.1.7. Remark: It is proved readily by induction that ~ ' ~  is a subfamily of 
~'~[M]; on the other hand, it is not true that  ~'~[M] is contained in ~'~f. We 

will show that  by going to a subset N of M, ~ [ N ]  and ~c~[iN] axe in a sense 
comparable. 

2.1.8. LEMMA: 

(a) For every r < ~ < wl there exists n -= n(~, ~) �9 N such that if  n <_ F �9 J:r 

then F �9 ~ .  The same holds for .T~ a, ~ .  

(b) For every ~ < wl, whenever F = {nl < . . .  < nk} �9 jc~ and mi >_ ni for 

i <_ k then we have { m l , . . . ,  mk} �9 ~'~. The same holds for Jc~ a. 

Proof: The proof of this lemma is obtained easily by induction. 

2.1.9. LEMMA: For every M C [N] there exists L �9 [M],L = (li)~eN satisfying 

the following property. For every ~ < wl, if A = {lkl < "'" < lk. } is a subset of 

L A �9 then A �9 
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Proof: Let M = (mi)iEN. We set ll = rnl and Ik+l = mzk for k _> 2. Let 

A = {lk, < . ' .  < lk~ } C_ L with A E ~'~. Then clearly we have 

Since we have lk,+l < lk2, Ik2+l < Ik3,...Ik~_,+l < Ik~ and since the class ~ ' ~  

is spreading (i.e. satisfies (b) of Lemma 2.18), we get that {Ik2 < "'" < lk,} -- 

Note: The above lemma was suggested to us by G. Androulakis and E. Ode]] 

as an alternative of a similar result we had which was weaker and much more 

complicated. We wish to thank them for their permission to include here their 

argument that is also contained in [An-Od]. 

2.1.10 PROPOSITION: For every M �9 [N], e > 0 there exists L �9 [M] such 

that: For every 1 <_ ~ < wl, P �9 [L], n �9 N there exists G �9 .T~  such that 

(~Pn , G> > 1 - e. 

Proof." Take L given by the Lemma 2.19 which works for the set 

{m C M: m > l/e}. If F = supp~ P, then it is easily verified that  the set G = 

F "- min F satisfies our assertion. 

2.1.11. COROLLARY: For every M E [N]there exists L E [M] such that: For 

every 1 _< ~ < wl, P E [L], n E N there exists G E ~c~ such that 

1 <C, c> > 

Proo~ We apply the previous Proposition for e - I - -  ~. 

2.1.12. Remark: A consequence of the above Lemma is that the Schreier 

hierarchy is in a sense universal. 

Indeed, consider f: N --+ N any strictly increasing function and define 

~'1 y -- {F  C N: m i n F  : n , # F  <_ f (n)}.  

~'1 y is an adequate family and the regular ~'1 is ~'1 y for f = idN. 

By iteration we produce (~'f)~<,ol and the repeated averages hierarchy 

for M E [N], n E N. 

Next define the set M -- (mi)ieN by the rule rni -- f ( i ) .  Then observe that  if 

we have that 
,T[ 'M ---- .~'~ [M]. 
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Therefore from the above corollary we get that  there exists L E [M] such that  
1 for every P E[L], n E N there exists G E j r ~  with ([~f,M]p, G / >  ~" 

This shows that  Jr LM, j r ~  are comparable on the set L. 

2.1.13. LEMMA (Approximation Lemma): Let ~ < Wl, M E IN], e > 0. We set 

W = c o ( { ~ :  n E N , N  E [M]}). Then for every ordinal ~ such that ~ <_ ~ < Wl, 
L E [M] there exists Lr  [L] satisfying the following property: 

For every L' E [Lr n E N we have that 

L' d~l ( ~  , W) < e. 

Proof: Fix ~ < wl and M E [N]. We shall prove the Lemma by induction for 

greater than ~, every L E [M] and e > 0. 

(i) ~ = ~ + 1. Indeed, if M E IN] and e > 0 then there exist L ,  satisfying the 

conclusion for the ordinal 7. Set Lr = L, .  It is obvious that for every L' E [Lr 
L' n E N we get the desired property d~l ( ~  , W) < e. 

(ii) ~ is a limit ordinal. Then fix the strictly increasing sequence (~,~),~eN of 

successor ordinals such that  sup ~,~ --- ~ and (~n),~eN defines the family jrr Since 

each ~n is a successor ordinal it has the form ~,~ -- {,~ + 1. 

Choose L0 E [M] with min L0 -- ml  and 1/ml < e/4. We inductively choose 

L0 D L1 D .-. D Lk D . . .  such that  if nk = minLk then (nk)keN is strictly 

increasing and Lk = Lnk_~ for M -- Lk-1, ~ ---- ~,~_~, e/2. 

CLAIM: The set N -- (nk)keN is the desired L~. 

Indeed, let L' E [n~], n E N. Then, by definition, ~L' = [~,~k] L~, where 

nk -- minsupp~ L', L~ -- {rn E n': nk _< m).  It is clear that L~ \{nk}  C Lk. 

Since ~,~ = ~,~ + 1, again by definition, [~nk] L~ is an average of nk many suc- 

�9 Since all of them except the first one are cessive elements of ('~k]~k ,~eN 

e/2 approximated by convex combination of W and 1/nk < e/4 we get that  

d~ ([~n~]~; , W) < e and hence d~ ( ~ ' ,  W) < e. This completes the proof of the 

lemma. 

STRONG CANTOR-BENDIXSON INDEX. 

2.2.1 Definition: Let j r  be an adequate family. For L E IN] we define the strong 

Cantor-Bendixson derivative of jr[L] by the rule: 

jr[L] (1) = {A E Jr[L]: VN E [L], A is a cluster point of jr[A U g]}. 
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2.2.2 Remarks: (1) It is clear that ~'[L] (1) is a closed and nowhere dense subset 

of ~'[L] which is also adequate; in fact we have 

Y[L](1) = U N (~C[A U N])', 
Ae[L] <~ gff[L] 

where (.~'[A U N])'  denotes the "usual" Cantor-Bendixson derivative of ~'[A U N]. 

(2) It is also easily verified that .T[L] O) r 0 iff .~'[N] is an infinite set for every 

Y E [L] (iff ~'[Y] (1) r r for every N E In]). 

If ~ = ~ + 1 then we inductively define ~C[L](r = (~'[L])(r (1). If ~ is a limit 

ordinal then we set 

= A 
r 

We define the S .C.B.  index  o f  .~'[L] as the smallest ordinal (0 such that 

~'[L] (~~ = O. 

We denote this index by s(~'[L]). Note that s(~'[L]) is a successor ordinal. 

The following Lemma is easily proved by induction on ~. 

2.2.2.a. LEMMA: For every N E [L], ~ < wl, 

.T[L] <~) M [N] <~ _C .T[N] (~). 

2.2.3 PROPOSITION: / f ~  <: w I a n d  L E [N] is such that s(~'[L]) > ~, then for 

every N E [L] we have that s(~'[N]) > ~. 

Proof: We will show that for every ordinal r satisfying r < ~ and for each 

g E [L] we have that s (~ [g ] )  > r + 1. 

It follows from Remark 2.2.2 (2) above that it is enough to prove that 

.T'[N](r is infinite for all N1 E [N]. By this same remark, we know that 

~'[L]r is infinite. By Lemma 2.2.2.a, ~'[L](r _C ~'[N](r and so 

~'[L](r = .T[L](r M IN1] <w _ .T'[N](r M [N1] <~ = ~'[N](r 
Thus .~'[NI(r ] is infinite as required. This completes the proof. 

For N, L subsets of N we say that N is almost contained in L if the difference 

L \ N is a finite set. 

2.2.4 PROPOSITION: If ~ is an adequate family, ~ < wl, N , L  E [N], such that 

N is almost contained in L, then s(~'[L]) > ~ implies that s(.~'[N]) > ~. 

Proof'. Similar to the previous one. 
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2.2.5 Remark: It is easily verified by induction on ~ that for every ~ < wl we 
have s(jr~) -- co~ + 1 (cf. also Prop. 4.10 in [A1-Ar]). 

Notation: In the sequel we will denote by Jr[L](~) the (-derivative of JC[L], while 

for N E [L] we denote by ~'(~)[N] the restriction JC[L](~)IN] of Jr[L] (~) on the set 
g .  Notice that Jr(~)[g] = Jr[L](~) Cl [N] <~ C Jr[g](~) by Lemma 2.2.2.a. 

2.2.6. THEOREM: Let Jr be an adequate family. I lL  E IN] such that s(jr[L]) > 

CO~ then there exists M E [L], M -- (mi) ies  satisfying the property: Jr~ is a 

subfamily of Jr[M]. 

In order to prove this theorem we shall use a method developed by Kiriakouli- 
Negrepontis [M-N]. This method consists of a double induction. We start with 

the next definition. 

Definition: An n-tuple of ordinals < CO 1 (~1, . . .  , ~n) has property (A) if for every 
adequate family j r  with 

and for every L E [N] there exists N E [L], N = (n~)~eN such that for every 

FI E Jr~I,.. . ,Fn E Jr~. with Fl < F2 < ...  < F~ 

the set {ni: i E Uk=l  Fk} belongs to Jr[N]. 

2.2.7 LEMMA: Suppose that ((1,(2, . . .  ,(~) has property (A) and ~ < wl. Then 

(~, ~1, (2 , . . . ,  (~) also has property (A). 

Proof: We proceed by induction on ~ < wl. 

CASE 1: ~ = 0. Given (~1,...,77k) with property (A) we show that 

(0, ~1, . . . ,  77k) also has property (A). 

Indeed, start with Jr adequate such that 

s(jr) > co nk + . . .  + wm + 1. 

Set r = w n~ + . . . + w  nl. Since s(jr) > ~+ 1  we get from Proposition 2.2.3 that for 

every L e [N], s(jr[L]) > r  and hence Jr[L](r is an infinite set. Therefore since 

Jr[L] (r is adequate there exists M E[L], M = (mi)ieN such that {{mi}: i E N} 

is a subfamily of Jr[L](r 

Observe that  the set 

~m, --- {F  E Jr[M \{ml}] :  {ml} U F E Jr[M]} 
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is an adequate family and s(g,~,) > ~. This is so since s(~'[M]) > r and {ml} C 

.T[M](r From the inductive assumption there exists M1 E [M] such that if 

F1 E :Fro, . . . ,  Fk C ~ ,~  with F1 < F2 < ".. < Fk 

then 
k 

D= {m~:iE U .T',7~} E ~m,[M,], 
j = l  

where M1 = (m~)iEN. 

Then clearly for any such D the set {ml } U D belongs to .T'[M]. 

Set nl -- ml ,  n2 -- m~ and repeat the same procedure by defining G,~2 and 

finding M2 E [M1] such that M2 --- (m~), n:  < m~ and if 

F1 E . f n l , . . . ,  Fk E ~'rlk satisfying F1 < F2 < " "  < Fk 

then the set {n2} U {m2: i e uk=l Fj} belongs to .T[M2]. Following the same 

procedure, we inductively choose nt, Ml with 

M = Mo D M1 D M2 D . . .  D Ml, and nl E Ul-1 

satisfying the above properties. It now follows immediately that the set N ---- 

(n/)ZEN satisfies the required properties and hence (0, rh, r12,..., rlk) has property 

(A). 

CASE 2: ~ : ~ -~ 1. Then by the inductive hypothesis, for every k-tuple 

(~?l,~2,...,rlk) with the property (A) and every l E N the l +  k-tuple 

( r  ~, r h , . . .  , rlk ) has the property (A). 

l times 
For every L E IN] such that 

s(JC[L]) > w'Tk + . . .  + w m + w ~ 

we have that  for every l E N 

s(.~'[L]) > w '7~ + . . .  + w m + w r + - . .  + we,. 

l t~rnes 

Hence we can find L D L1 D . . .  D Lt D ..- with Lz satisfying the property: 

ifF  e e Yr e eY,  

l" i e U Fj EJr[Lt]. and F1 < " '  < Fl+k then m i. 
j = l  
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Then if N -- (nl)leN with nl EL l ,  it is easy to see that N satisfies the required 

properties, hence (~, ~1, . . - ,  z]k) has property (A). 

CASE 3: ~ is a limit ordinal The proof is similar to the previous case. 

Proof of the theorem: We shall use induction on ~. The result is obvious for 

= 0. Let 1 < ~ < wl and assume that it is true for every ~ < ~ and each 

adequate family .~" with s(~') > w ~. 

CASE 1: ~ = ~ +  1. Since s(J c) > w ~ > we-I  and (~,~, . . .  ,~) has property (A) 
, y 

l times 
then for any L C [N] choose 

L = Lo D L1 ~ L2 D -.. ~ Ll ~ " "  

such that  Ll witnesses property (A) for the set ~'[Lt-1] and the / - tuple  ( r  r 

It is easy to show that  for any N C [L] such that  N = (nz)leN and nl E Ll 

~'[N] satisfies the inductive assumption for the ordinal ~. 

CASE 2: ~ iS a limit ordinal Let (~,~),~eN be the strictly increasing sequence 

with sup ~,~ = ~ that  defines the family ~'~. For every L E IN] we choose L = 

L0 D L1 ~ . "  D Ln D . . .  such that  Ln witnesses property (A) for (~,~) and 

the set ~C[L~_l]. If we set N = (k,~),~eN such that kn �9 Ln then we easily check 

that .T[N] satisfies the inductive assumption for the ordinal ~. The proof of the 

theorem is complete. 

Remark: It is clear that the following statement is a reformulation of Theorem 

2.2.6: For every ~ < wl the 1-tuple (~) has property (A). This observation together 

with Lemma 2.2.7 immediately gives the following 

2.2.8 COROLLARY: For every n �9 N and each ~l , . . . ,~n < wl the n-tuple 

(~1,-.-,  ~n) has property (A). 

Remark: For k l , . . . , k n  �9 N and ~1, '" ,~,~ < wl we denote by 

((.T~l)kl . . . ,  ( ~ . ) k , )  the set of all subsets F of N that can be written in the 

form 

where F I  < . . .  < F~, and F~ �9 ~'~, for all i < n and j < ki. These families are 

defined in [O-T J-W], where it is also proved that  if a family .T is adequate and 

spreading and has Cantor-Bendixson index not exceeding w ~ kl + .-- § we-k,~ 

then for some M �9 [N], M = (mi)ieN , 

yM c ((YJ', . . . ,  
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where .~.M _~_ {{mi}iEF: F E .~}. 
It is clear from Corollary 2.2.8 that if .T is an adequate family with s(.T') > 

w ~". kn + ' "  + w ~1 �9 kl, then for every L E [N] there exists N E [L], N = (ni)~eN 

such that  for every F E ( ( ~ ' ~ ) k l . . . , ( ~ " ) k . )  the set {hi: E F} belongs to 

/ '[N]. 

LARGE FAMILIES. 

2.3.1 Definition: Let ~" be an adequate family, M E [N], ~ < Wl and e > 0. We 

say that  ~" is (M, 4, e) large if for every N E [M] and every n E N we have that  

sup (C, F) > 
F6.T" 

2.3.2 PROPOSITION: IlC.~" is an adequate family which is (M,~, e) large, then for 

every L E [M] there exists Y E[L] such that s(~'[N]) > w ~. 

This proposition is one of the basic ingredients for the proof of the main The- 

orems of this section. This result in connection with Theorem 2.2.6 shows that  

every (M, ~, e) large family ~" contains a family ,T~ v'. Hence the summability 
N methods {(~n ),~eN, N E [M]} are sufficiently many to describe the Schreier fam- 

ily .T~ v'. The proof of the proposition depends strongly on Theorem 0.1 and the 

stability properties P.3-P.4 of the RA hierarchy. 

Proof of the proposition: We proceed by induction. The inductive hypothesis is 

the statement of the proposition. 

CASE 1: ( = 0. This is the easiest case since the result immediately follows 

from the definitions. 

CASE 2: ~ is a limit ordinal. In this case we prove first the following. 

CLAIM: For every ordinal ~ with ~ < ~ and every L E [M] there exists N E [L] 

such that s(~'[N]) > we. 

Indeed, given L E [M] we define a partition of [L] into A1,A2 by the rule: 

A I = { N E [ L ] :  s u p ( , N , F ) <  e}  

! 
A2 -- [L] \ A1. Notice that  if N = (rni)i~N and N'  = (mi)iEN are such that  

' for all i < k -- maxsupp~ N then by P.3 we get that  ~ -- ~N' hence mi ---- m i _ 
A1 is an open set. Therefore from Theorem 0.1 we get that there exists L1 E [L] 

such that  either [L1] C A1 or [L1] c A2. 



Vol. 107, 1998 WEAKLY NULL SEQUENCES 179 

Assume that  [L1] C A1. Then by P.4 we have that  for every N E [L1] and 

every n E N, supFej:(~ N, F) < e/2. 

This is so since any such ~N is equal to ~N' for some N'  E IN]. 

But then, from Lemma 2.1.13, there exists L~ E [L1] such that  for every 

n E N, dtl(~ Lr < e/2 where W = co({~N: n E N , N  E ILl]}). Hence 
L~ supF~y(~ n , F)  < ~/2 + e/2 = c, a contradiction; therefore [L1] C A2. 

This means that  the family ~'[L1] is (L1, {, e/2) large and by the inductive 

assumption we get that  there exists N E [51] such that s(~'[N]) > w r Next 

choose a strictly increasing sequence of ordinals (~n),~eU with sup ~,~ = ~. 

Inductively we choose L = L0 ~ L1 D L2 D .. .  D Ln ~ - ' .  such that  

s(~'[Ln]) > J ~ .  

It is easy to see that  for every N E [L] such that  N is almost contained in L,~ 

we have that  s(•[N]) > w ~ , and therefore s(JC[N]) > w r The proof for case 2 

is complete. 

CASE 3: ~ ---- ~ + 1. We start with the following Lemma, the proof of which 

uses Theorem 0.1. 

2.3.3. LEMMA: Let ~ = ~ + 1, M E IN], e > 0 and ~" an adequate family that 

is (M, ~, e) large. Then for every i E[M] and every n E N there exists i,~ E [L] 

such that for every N E [L~] and k E N 

�9 N sup mln{(~k ,F):  1 < k < n} > e/2. 
FE3 r 

Proof: Consider L E [M] and n E N, and define a partition of ILl into A1, A2 
by the rule 

A1 = {N E [L]: 3F  E ~', {(~N,F) > e/2 for k = 1 , . . .  ,n} 

and A2 --- [L] \ A1. 

As in the previous lemma, A1 is an open set hence, by Theorem 0.1, there 

exists Ln E ILl such that  [Ln] C A1 or [Ln] C A2. 

We will show that  the second case is not possible and this will prove the lemma. 

Indeed, assuming that  [Ln] C A2 we get that  for every N E [Ln] and every 

kl < k2 < -..  < kn and every F E ~" 

�9 N = n }  mm {{(~k,, F}  ,i  1 ,2 , . . .  _< e/2. (1) 

N' This follows from the fact that  there exists N r C N such that  ~i = ~k N for all 

i = l , . . . , n .  
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Each ~[L, is an average of successive elements of ((~'")keN, that is 

) sm kin+ " +~k,~+~m 

and (Sin)meN is stictly increasing. Choose F E ~" such that (~L,, F) > e. 

Then for large s,~ we get that # i: ((k,~+l, F) > e/2 > n. But this contra- 

dicts (1) and the proof is complete. 

2.3.4 LEMMA: Assume that ~, M, e,J e are as in the previous/emma. Then for 

every L E [M] there exists N E [L] such that for every n E N and N'  E [N] with 

rain N '  > n we have that 

�9 . N  l 

sup mm{i(k ,F>: k = 1 , . . . , n }  > e/2. 
FE.~ 

Proof." We inductively apply the previous lemma. Choose L D L1 D . . .  D L,~ D 

-.- such that  for all n the set L,~ satisfies the conclusion of the previous lemma. 

Then any set N -- (m,~),~eN with the property m,, E Ln has the desired property. 

2.3.5 LEMMA: Let r < wl, M e [N], e > 0 and .F be an adequate family�9 

Suppose that for some n E N we have that for every L E [M] 

sup min{(t~L, F): k -- 1, . . .  ,n} > e. 
FE.~ r 

Suppose that ( satisfies the inductive assumption. Then for every L E [M] there 

exists N E [L] such that 

s(~'[N]) > wr 

Proo~ We proceed by induction on N. 

CASE 1: k : 1. As we have shown in previous proofs, thefact  that fo rN  E [M], 

supfe~-((1 N, F) > e, implies that ~" is (M, (, e) large, hence by the inductive 

assumption every L e [M] contains infinite subset N such that s(.T[N]) > w r 

CASE 2: k : n. Assume that the Lemma has been proved for all 

k = 1 , 2 , . . . , n -  1. 

Given n E [M], since for every g E ILl the vector ~ has finite support and 

rational coefficients we get that the set {(~IN: N E [L]} is countable and we order 

it as ( ( , ) , eN .  Consider (1 and fix L1 �9 [L] with 

maxsupp( l  ,= min L1. 

F d Let { ~}i=1 be an enumeration of all nonempty subsets of supp(  1. We define 
A d a partition of ILl] into a family ( ~)i=1 defined by the rule 
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Ai = {N �9 [L~] : if N '  = supp~a U N and 3F  �9 ~" satisfying 

N' min{(~k ,F) :  k = 1 , . . . , n }  > e 

N' and F n supp~l = F N supp~l = Fi}. 

Each Ai is an open set, hence by Theorem 0.1 we get that  there exist io and 

$1 �9 ILl] such that  for every N �9 [$1] there exists F �9 j r  with: 

N t 
min{(~k ,F) :  k = 1 , . . . , n }  > e 

and 
N t 

supp~x n F = Fio- 

Set G1 = Fio and consider the set 

-~'G1 -- {F �9 ~': F n supp~l = G1}. 

Then it is easy to see that  S a , r  1 satisfy the inductive assumptions, 

hence there exists N1 C [5'1] such that 

s(a~Gl[N1]) > w r (n - 1). 

As a consequence of this we get that G1 E ~'al  IN1] (n-1)'~r 

Inductively choose L D N1 D . . .  D Nk D . . .  and (Gk)keN such that 

(i) max supp Ck < min Nk 

(ii) Gk C supp ~k, Gk E .~ and (~k, Gk) > e, 

(iii) Gk e ~'ak [Nk] (~''(~-1)), 

where -T'Gk = {F E .T': F N supp~k = Gk}. 

T h e  choice is done as in the case r 

Choose a set N that  is almost contained in Nk for all k E N. 

CLAIM: For every k �9 N the set Gk belongs to ~'ak[N] (~r where ~a,[N] 

is defined as: 

~ 'c ,  IN] = {F C ~'[supp Ck U N]: F n suppr k = ak}.  

Indeed, set N k = {m E N: maxsupp~k < m}. 

Then since N \ N k is finite, we get that  Gk E ~'ck [N] provided that  Gk E 

~cck [Nk]. Further, N k is almost contained in Nk and, from (iii) and the fact that  

w r (n - 1) is a limit ordinal, we get that Gk E ~ck[N] .  

To finish the proof of the lemma we prove the following. 
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CLAIM 2: There exists N'  E [N] such that ~'[N'] (~r ~ 0. 

Indeed, consider the family 

g[N] = {F: 3/~ E N with Gk C N, F C Gk}. 

It is easy to see that ~[N] is an adequate family. Further, for Gk C N we have 

.Yak[N] C JOIN], hence for every F E g[N] we have that F E 9C[N] (~r 

So we get that  G[N] C .T'[N] (~r 

Notice also that  for every S E [N] there exists Gk E 9[N] such that  ( (s ,  Gk) > 

e. Hence giN] is (N, ( ,  e) large and by the inductive assumption there exists 

N '  E [N] such that g[N'] (~) r 0. Hence 

- - ( w r  

~'[N'] (~r = [.TtN'] (~r ' D G[N'] (~r # 0. 

This completes the inductive proof of the lemma. 

COMPLETION OF THE PROOF OF THE PROPOSITION. Using the previous 

lemmas, for a given L E [M], we choose L D L1 D L~ D . . .  D Ln D ..- 

such that  s(~'[Ln]) > w r �9 n. Then it is easy to see that if N is any set almost 

contained in L,~ for all n E N, then s(JC[N]) > w r -n  for all n E N, and hence 

s(JC[N]) > w r = w ~. The proof of the proposition is complete. 

We conclude this section with the following proposition. 

2.3.6 PROPOSITION: Let ~ < wl, M E IN], e > 0 and .~ be an adequate family. 

Suppose that there exists L E [M], L = (mn)neN satisfying the property: 

for every n E N, N 6 [L], n _< m i n N  

sup ~(~N,F):  k : 1 ,2 , . . . ,n '~  > e. 
] 

Then there exists N E [L] such that s(~'[N]) > w ~+1. 

Proo~ Notice that  ~" satisfies the assumptions of the previous lemma, hence 

there exists a decreasing sequence (L,~),~eN of subsets of L such that s(JC[L~]) > 

w~ �9 n. Now, if N is almost contained in Ln for all n E N, it is easy to see that  

s(JC[N]) > w ~+1. 

THE MAIN RESULTS. We now state and prove the main results. 

2.4.1 THEOREM: For a weakly null sequence (Xn)ne N in a Banach space X and 

< wa, exactly one of the following holds: 
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(a) For every M E IN] there exists L E [M] such that for every P E [L] the 

sequence (xn)~eN is (P, 4) summable. 

(b) There exists M E [N], M = (m~)ieN , such that (xm,)ieN is an g~+, 

spreading model. 

To prove the theorem we begin with the following lemma. 

2.4.2. LEMMA: Assume that F = (x~)neN is a weakly null sequence and ~ < Wl 

is such that for every M E [N] there exists N E [M] with (Xn)ne s not (N, ~) 

summable. Then there exists e > 0 and L E [N] such that for every N E [L] 

n L 
L E k = l  ~k " F lim []zLII > e, where z~ - n 

Proof: We prove it for M = N. The general case is similar. For given e > 0, 

n E N, we consider the set 

A,,~ = {M E [N]: IlzMII <__ eVk >_ n).  

, oo A Clearly each Ar ,~ is a closed set, hence the set A~ -- Un=l r is a Ramsey set. 

Therefore there exists Lr E [N] such that [Lr C A~ or [nr C IN] \ Ar 

If there exists some e > 0 and L E [N] such that  [L] C [N] \ A~ then the 

lemma has been proved. Assume that  this does not occur. Then inductively choose 

N D L1 D L2 D . . .  ~ Ln D " -  such that [Ln] C A1/n and let L be any infinite 

set almost contained in Ln for all n E N. 

CLAIM: I f  N E [L] then (x~)~eN is (N,~) summable. 

Indeed, for any such N and n E N there exists k~ E N such that  for every 

k E N with k~ <_ k we have that  supp~ N C Ln. Therefore i f N '  = Uk>_k. s u p p ~  
N N ~ then by the property P.4 we get that  ~N' = t~(s-1)+k,. Since E [L,~], there 

exists so such that  for all s > so we have that I[z y '  II <- 1/n. But then there exist 

large sl such that  for every s > sl we have 

,N F s N FII 
_ m ~ = l  + *-,~=1".~ ~ = s + l - k .  ~i 

8 8 8 

kn - 1 1 kn - 1 2 < - - + - + ~ < - .  
s n s n 

This proves the Claim and it contradicts our assumptions. Hence there exists 

e > 0 and L e [N] such that  [L] is a subset of [N] \ Ae and this completes the 

proof of the lemma. 
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2.4.3 LEMMA: Let F = (x,~)n~s be a weakly null sequence. Suppose that for 

< wl, M E IN] and e > 0 we have that for all N E[M] 

N Ei~=l~ N ' F  
V llz ll > where  z .  - 

n 

Then for every L E [M] we have: 

(a) For every n E N there exists L,~ E [L] such that for every N E [Ln] 

g sup min{x*(~ N ' f ) : k = l , 2 , .  , n } >  e 
a n -~  . .  -~ .  

x * E B x .  

(b) There exists N E [L], N = (ran)hEN such that, for every N'  E IN] with 

mn __ min N I, 
N' 

a n ~ -~.  

Proo~ (a) For a given L E [M] and n E N we partition [L] into A1, A2 by 

A1 = N E [L]: a n > , A2 -- [L] \ A1. 

The set AI is a Ramsey set, hence there exists Ln such that either [L,~] C A1 or 

[L,~] C A2. The first case proves part (a) of the Lemma. We show that the second 

case does not occur. 

Indeed, if [Ln] C A2 then we get that for kl < k2 < ..- < kn there exists 
N _< c/2. N E [L~] such that ~L~ = t~lN,... ,~kL" = t~ N and, since N E A2, an 

Choose s large such that there exists x* E Bx .  with 

X* i=1 
8 

Then from the choice of s we get that 

# {i: _< s, F / >  > n. 

But then there exists N E [L,~] with a~r > e/2, a contradiction, and the proof of 

part (a) is complete. 

(b) Choose, inductively, a decreasing sequence (L,~)neN such that Ln E [L] 

and Ln satisfies the requirement for the number n of part (a). It is clear that  any 

N almost contained in Ln for all n E N is the desired set. 

Next we will prove two lemmas that  will help us to reduce the proof of the 

theorem to the case of the sequence (Tr,~),~eL of the natural coordinate projections 

of {0, 1} N acting on an adequate family .T of finite subsets of N. 
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2.4.4 Definition: Let D be a weakly compact subset of co(N) and 5 > 0. We set 

jr~ = {F C N: 3 f  E D with f (n)  >_ o~n E F}. 

2.4.6 Remark: The weak compactness of D implies that jr~ is an adequate 

family of finite subsets of N. 

2.4.6 Notation: As we denoted in 2.1.5, j r ,  IN] = {F E jr , :  F C N}. 

The next Lemma is a consequence of Lemma 1.2. 

2.4.7 LEMMA: Let D be a weakly compact subset of CO(N). Then for every 5 > 0, 

c > 0 and M E IN] there exists N E [M] such that for every F E jr~[N] there 

exists f E D such that 

(i) min{f(n):  n E F} >_ (1 - e)5, 

(ii) ~,~eN'- F If(n)l <_ e .  5. 

Proof: From Lemma 1.2 for every M E [N] there exists N E [M] such that for 

every k E N, F E jr6[N] with m a x F  < k there exists fk E D, 

(i) min{fk(n): n E F} > (1 - e)5, 

(ii) E~=I  [fk(n)l < e. 5. 
n~'F 

The desired f is the weak limit of any weakly convergent subsequence of (fk)keN. 

2.4.8 LEMMA (Reduction Lemma): Let H = (xn),~eN be a weakly null sequence 

in a Banach space with IIx,~ll <__ I. Then for every 5 > 0 and e > 0 there exists an 

adequate family jr  of finite subsets of N and a function f: B x .  ~ jr  such that: 

For every M E [N] there exists N E [N] satisfying the following properties: 

(a) If A E S +, suppA C N, then for every x* E Bx-  with (x*,A. H) > 5 we 
have (A, f (x*))  > 52/4. 

(b) I r A  E S~ with suppA C N and F E jr such that /A,F)  >_ e, then 

IIA-HII > 5/4. 

Proof: We start by noticing that if A E S + and x* E B x .  are such that  A = 

(an),~N and x*(A .  H) > 5, then for F = {n E N: x*(xn) > 5/2} we get that 

~ n e F  an > 5/2. Hence {A, F / > 62/4. 

Since (xn)neN is a weakly null sequence, the set 

D = {(x*(x,)),eN: x* E B x . }  

is a weakly compact subset of co(N). Applying Lemma 2.4.7 for D, 5/2, e/4 and 

M E [N] we find N C [M] satisfying properties (i) and (ii) of that lemma. We 

let j r  be the adequate family defined as jr~/2. We also define f :  B x .  ~ j r  by 
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the rule f(x*) --- {n E N: x*(xn) > 5/2}. Using our note at the beginning of the 

proof, we get that  property (a) holds for every N E [M]. To see property (b), 

suppose that  A E S~1 with supp A C N and F E jc such that (A, F) > c. Then 

we may assume that  F C N M {n E N: an > 0} and, by the definition of ~', there 

exists G E ~'~/2 such that F C G M N. Then there exists x* E Bx* such that 

(i) min{x*(xn): n E F} > (1 - ~) ~, 

(ii) ~nf[F IX*(Xn)I < �9 5 - ~ .  

From (i), (ii) and the fact that (A,F) > e we get that IIA. Hll > r 5/4. The 

proof is complete. 

Proof of the theorem: We prove first that the negation of (a) implies (b). Suppose 

that ]lxnll < 1 and for a given ~ < Wl the case (a) does not occur. Then from 

aemma 2.4.2 there exist M E [N] and 5 > 0 such that 1-~mlizLil > 25 for all 

L E [M]. Going to a subset of M if necessary, we may assume that part (b) of 

Lemma 2.4.3 is also satisfied for M with r replaced by 5. 

Consider the family ~" defined in Lemma 2.4.8 for the sequence (Xn)neN and 

the number 6. Let N E [M] such that (a) and (b) in Lemma 2.4.8 are satisfied. 

Property (a) in connection with the fact that N satisfies the conclusion of Lemma 

2.4.3 shows that  the assumptions of Proposition 2.3.6 are fulfilled. Hence there 

exists N' E [N] such that  s(~'[N']) > w f+l. From Theorem 2.2.6 there exists 

N1 E [N'] such that  N1 = (mi)~eN and for every F E 3c~+1 the set {mi: i E F} E 
3 c . 

CLAIM: Fo r  every F e '~"~+1, II ~iEFaiXm, ll ~ ~ Z iEF lail �9 

Indeed, by standard arguments, it is enough to show it for (ai)ier E S~I. If 
1 1 (ai)ieF E S~ then either ~{a i :  i E F, ai > 0} _> ~ or E{a i :  / E F, ai < 0} g - ~ .  

We assume that  the first case occurs. Otherwise we consider (bi)ieF such that  

bi = - a i  for all i E F. Set F' = {i E F: ai > 0}; then clearly (A, F ' )  > �89 and 

hence [I A .  (Xn)neNi[ > 5/8, which proves the claim. The proof is complete. 

We now show that  parts (a) and (b) of Theorem 2.4.1 are mutually exclusive. 

2.4.9 PROPOSITION: Let (Xn)neN be a weakly null sequence in a Banach space 

X. If  ~ < 0.)1, M E [N] and 5 > 0 axe such that M -- (mi)ieN and 

I} ~ a~x,~,ll >_ g" ~ lasl for every F ~ ~+x, 
iEF iEF 

then there exists L E [M] such that for every P E [L], (Xn)n~N is not (P, ~) 
summable. 
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Proof: Consider the adequate family .~" defined in the Reduction Lemma (Lemma 
1 2.4.8) for the sequence (Xn)nEN, the number 5 in our assumptions and e = 

(Proposition 2.1.10). Find N E [M] such that conditions (a), (b) of the Reduction 

Lemma are fulfilled. Denote by ( [ ,M]  P ) , P E IN], the summability meth- 
n h E N  

odsde f inedby theru le  [ , M ] : - = ( a , ~ ) i ~ N w h e r e ~ P = ( a i ) i e N a n d a m ,  : a i .  

L ~ Then ~" is (N, (~q-1) M, 52/4) large, hence there exists L' E [N] such that ~'r is 

a subfamily of ~', and hence by Proposition 2.1.11 there exists L" E [L'] such that 
1 for every P E[L"],  n E N there exists G E "~'-~1 such that <(~ + x) P, G} > ~. 

Choose, as in Lemma 2.4.3 (part (b)), an L E [L"] such that L = (/n),~eN and, 

for every P E [L] and n < kl < k2 < "-" < k,~, there exists G E .T such that 

<~kP,G} > 1. Then by part (b )o f  the Reduction Lemma there exists x* E Bx* 

such that (~k P .  H , X * }  > 5/16 where H = (Xn)neN and (Hi)~=I,P are as above. 
I 

! 

It is clear now that for every P E [L] the sequence (xn)~EN is not (P, ~) summable. 

2.4.10 Remark: The above Proposition immediately shows that parts (a) and 

(b) in Theorem 2.4.1 are mutually exclusive. 

For the sequel we need the following result proved in [A1-Ar]. 

2.4.11 PROPOSITION: Let X be a Banach space and (Xn)ne N a weakly null 

sequence in X.  

(a) There exists ~ < o) 1 SUCh that for all ~ < o21, ~ ~__ ~, (Xn)neN does not 

contain a subsequence which is an ~ spreading model. 

(b) If  ~1 does not embed into X then there exists ~ < Wl such that for every 

< wl, ~ <_ ~ and any bounded sequence (Xn)neN there is no subsequence 
of (Xn)neN which is an ~ spreading model. 

Sketch of proof: The proof of (a) follows from the fact that 

i=1 

ordered in the usual manner is a well-founded tree. If not, the sequence (x,~)neN 

should contain a subsequence equivalent to the unit vector basis of ~1 and that 

contradicts the weak nullness of (x,~)neN. Therefore the height of T~, denoted by 

o(~) ,  is a countable ordinal ~ .  Further, if ( X n ) n e  N has a subsequence that is an 

~} spreading model with constant 5~ > e then w r < ~ .  So if ~0 -- sup{~,  e > O} 

then every ~ < wl such that (xn),~eN has a subsequence which in an s spreading 

model should satisfy w ~ < ~o and this proves the result for part (a). 
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The proof of part (b) is the same and uses the technique developed by Bourgain 

[B]. 

THE BANACH - SAKS INDEX. 

2.4.12 Definition: Let X be a Banach space and (xn)~eN a weakly null sequence 

in X. 

(a) The Banach-Saks index of (Xn)nEN denoted by BS[(xn)nEN] is the least 

ordinal [ such that  there is no subsequence of (x~)neN which is an /~  spreading 

model. 

(b) If X is a Banach space not containing gl (N), then we denote by BS[X] the 

least ordinal [ such that no bounded sequence (x~)~cN in X is an g~ spreading 

model. 

2.4.13 THEOREM: Let H = (x~)neN be a weakly null sequence with BS[(xn)neN] 

= ~. Then ~ is the unique ordinal satis~ing the following: 

(a) For every M E [N] there exists L E [M] such that for every P E [L], 

limneN I1~ P" HII = O. 

(b) For every ( < [ there exists Lr E IN] such that Lr = (n,),eN and (xn,)ieN 

is an g~ spreading model  

(c) I f ~  = ( + 1 there exists e > 0 and n E [N] such that for all P E [n], 

Proof: (a) For L E [N] and n E N we define a partition of [L] into sets A, B by 

the rule A = {P: Htf"  H[I _< e} and B = [ L ] \ A .  It is easy to see that  A is a 

closed subset of [L], hence by Theorem 0.1 there exists N E [L] such that  either 

[N] C A or [N] C B. If the second case holds then by the Reduction lemma we get 

that  (Xn)neN has a subsequence which is an ~ spreading model, a contradiction. 

Hence IN] c A. Choose, inductively, M D L1 D L2 D . . .  D L~ D . . .  such that 

for every P E [Ln], ]]~P. Hll < 1/n and set L = (/,~)neN such that  In E L,~. Then 

it is easy to see L satisfies the conclusion of the first part of the theorem. 

(b) This follows from the definition of ~. 

(c) Suppose now that  ~ = ~ + 1. Then, by the definition of BS[(xn)neN], there 

exists M E [N] such that (Xn),~eM is an t~ spreading model. Then by part (a) 

of Theorem 2.4.1 there exists N E [M] such that  for every P E IN] (X,~)neN 

is (P, ~) summable and, finally, from Proposition 2.4.9 there exist L E [N] and 

e > 0 such that  for every P E [L] and n E N, ]l~ p .  Hll _> e. This proves part (c) 

and the proof is complete. 
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2.4.14 Remark: (i) The first part of the above Theorem is satisfied by any 

normalized weakly null sequence in Tsirelson's space. Any such sequence has 

Banach-Saks index equal to w. 

(ii) The third part gives a complete answer in the following question posed 

by the first-named author: For what weakly null sequences does there exist a 

sequence (Yn)neN of block convex combinations such that  IlYnll > e and (Yn)neN 
is Cesaro summable. 

We conclude this Section with the following corollaries. Their proofs follow 

easily from the previous theorems. 

2.4.15 COROLLARY: For every separable reflexive Banach space X there exists 

a unique ordinal ~ < 031 such that: 

(i) For all ordinals ( > ~ the space X has ~-BS. 

(ii) For every ~ < ~ the space X fails (-BS. 

2.4.16 COROLLARY: If X is a separable Banach space not containing e 1 

isomorphically then there exist a unique ordinal ~ < wx such that: 

(i) For all ordinals ~ >_ ~ the space X has w ~-BS. 

(ii) For every ~ < ~ the space X fails w ~-BS. 

THE ANTI-UNIFORM CONVERGENCE INDEX. Let K be a compact space and 

fn: K > R, n E N a sequence of continuous functions such that  fn)0 pointwise 

on K. If P is any closed non-empty subset of K and e > 0 we set 

P '((f~),  e) = {x e P: V nbhd's V o f x  the set {n e N: IIf~lPnyll ~} is finite}. 

It is clear that  the set P'((fn), ~) is obtained from P by deleting the relatively 

open sets in P on which some subsequence of (f,~) is e-uniformly convergent. We 

define by induction the iterates Pr e) for each ordinal 4, and let 

least ~ with Pr c) = 0, if such a ~ exists, 
auc((fn), P) s 

( Wa, otherwise. 

We also set 

auc((fn),e) = auc((fn),e,K) and anc((/n)) = supauc((f , ) ,e)  

(cf. the definition of "convergence rank" in [K-L], p. 212). 
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2.5.1 Remarks: (1) It is clear that for a closed non-empty subset P of K,  the 

set P'((f,~), e) is a closed subset of P.  

(2) If (f~) is any subsequence of (fn) then it is easy to see that  

auc((f')) > auc((A)). 

(3) If K is compact metric, ~ > 0, M E [N] and t E g ' ( ( f n ) ,  e), then a simple 

diagonal argument shows that  there exist (t~)~eN C K and L = (l,~) E [M] such 

that  t,~ -~ t, t,~ # tm for m < n and ]ft~(t~)l > e for every n = 1 ,2 , . . . .  

2.5.2 PROPOSITION: Let (fn) be a sequence of continuous functions on the com- 

pact metric space K such that f,~)O pointwise on K.  Then there is ~ < Wl such 

that auc((f~)) < ( for every subsequence (f~) of ( f . ) .  

Proof." For a closed nonempty P C K and e > 0 we set 

P~ := {x E P: V nhhd's V of x the set {n E N: [[fniPnv[[ > c} is infinite}. 

It then follows from Baire's Category Theorem that P~' is a closed nowhere dense 

subset of P.  If (f~) is any subsequence of (fn) then it is clear that 

P ' ( ( f ' ) ,  e) C P:; 

furthermore, by induction one can prove that P~( ( f ' ) ,  e) C P [  for every ordinal 

~. Since K is a compact metric space and the family (K~)~<~ 1 is decreasing and 

consists of closed subsets of K,  there is ~(e) < Wl such that K [  (~) = ~. It is clear 

that  ~ -- sup{~l/,~: n E N} is the desired countable ordinal. 

Let K be a compact metric space and fn: K > R, n E N a sequence of 

continuous functions on K such that fn)0 pointwise on K.  For every e > 0 we 

set .T~ = {A C N: 3t E K with [f,~(t)l >_ e Vn E A}. It is easy to see that  ~'~ is 

an adequate family of (finite) subsets of N. 

2.5.3 THEOREM: Assume that auc((fn),  e) > ~ for some ~ < wl and some e > 0. 

Then we have s(~r~[n]) > ~ for every n E [N]. 

For the proof of this theorem we need the following. 

2.5.4 LEMMA; Let 1 <_ ~ < 031, s > O, t E K~((fn),  e) and A E [N] <'~ such that 

[fn(t)[ > e for each n E A. Then A E :T~ r 

Proof'. We proceed by induction on ~. 
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CASE 1 : 4  = { + 1 "  Let to E Kr  and A E [N] <~ be such that  

Ifm(to)l > c for every m C A. Since for each m E A the function fm is 

continuous and Ifr~(to)l > e, it follows that there is a nbhd V of to such that  

(1) I f ,~( t ) l>e f o r t e Y a n d m � 9  

Let N �9 [N]. Since to �9 Kr there exist M �9 [N], M = (kn)neN and 

a sequence (tn)neN C V M Kr --+ to, t,~ r t,~ for m < n such that  

lA~(t~)l >__ e for n = 1 ,2 , . . . .  

It follows immediately that  for n = 1, 2,. ,. we have 

Ifm(tn)l >_ e for every m �9 A u {k,~}. 

Therefore from the inductive assumption we get that 

A U {k,~} �9 ~ for every n = 1, 2 , . . . .  

We conclude that for every N �9 [N], A is a cluster point of .T~[A U N], hence 

A �9 j ~ + l .  

CASE 2 : 4  is a limit ordinal. This is obvious. 

The proof of the Lemma is complete. 

Proof of  the Theorem: We proceed by induction on 4. We notice that  the 

assertion is clear for ~ = 0. 

CASE 1 : 4  = 4 +  1. Since auc((fn),e) > 4 we get that Kr 7~ @ for 

every L �9 IN]. So let L �9 IN] and to �9 Kr It then follows from 

the definition of auc-index that  there is (tn) D Kr e) and M �9 [L], 

M = (kn),~eN such that,  tn --+ to and Ifk.(t,~)] > e for n = 1, 2 , . . . .  So we get 

from the previous lemma that  {m} e .T~ [L] for all m �9 M, hence .r~+l[L] ~ @ 

(because @ E .T~+I[L]) and thus 

s(JC~[L]) > r + 1 = (. 

CASE 2 : 4  is a limit ordinal. Let { < 4; then we have that  auc(( f , ) ,  e) > 4 > {, 

hence by the inductive assumption s(JC~[L]) > { for every L �9 [N]. Since { is a 

limit ordinal we get immediately that  s(~[L]) > ( for every n �9 [N]. 
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2.5.5 PROPOSITION: Let H = (Xn)neN  be a weakly null sequence and ~ > O. Set 

D = {(X*(Xn))neN: IIx*ll 1} 

and let 3c ~ be the family corresponding to the set D and the number ~. I f  

there exists M E [N] such that ff:~ is a subfamily of ~ ,  then (Xn)ne N has a 

subsequence which is an s spreading model. 

Proof." From Lemma 2.4.8 (b) for e = 1/2, there exists N E[M] such that  for 

every A = (an)HeN e S~ with suppA e ~'~[N], [[A" HI[ > 5/4. It follows that  

(x,~)neN is an g~ spreading model. 

2.5.6 THEOREM: Suppose that (xn)neN is a weakly null sequence and 

auc((f,~),~eN ) > w~. Then there exists M E [N] such that (Xn)ne M is an ~ 

spreading model. 

Proof: This follows from Theorem 2.2.6 and the above Proposition. 
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